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The dynamic behaviors of a damped satellite with partially-filled liquid which
is subjected to external disturbance are studied in this paper. The Lyapunov direct
method is used to obtain conditions of stability of the equilibrium point of the
system. A co-dimension one bifurcation analysis for the autonomous system is
carried out near the degenerate point. It is found that Hopf bifurcation occurs in
the system by center manifold theory. By applying numerical results, phase
diagrams, power spectrum, Poincaré maps, and Lyapunov exponents are
presented to observe periodic and chaotic motions. The effect of the parameter
changes in the system can be found in the bifurcation and parametric diagrams.
For global analysis, the basins of attraction of each attractor of the system are
located by employing the modified interpolated cell mapping (MICM) method.
Finally, several methods, the delayed feedback control, the addition of constant
motor torque, the addition of periodic force, and adaptive control algorithm are
used to control chaos effectively.
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1. INTRODUCTION

During the past one and a half decades, a large number of studies have shown
that chaotic phenomena are observed in many physical systems that possess
non-linearity [1–2]. Many studies of the satellite system partially filled with liquid
have been carried out in recent years. This paper will study the non-linear
behaviors of a simplified system. Because of the complexity of the problem, we
assume in the analysis that liquid is solidified and the influence of the motion of
the sloshing liquid on stability is simulated by an approximate moment caused by
the equivalent solid. Satisfactory results were obtained which can meet
requirement in applications.

The aim of this paper is to present the detailed dynamics of the satellite system
partially filled with liquid. A lot of modern techniques are used in analyzing the
deterministic non-linear system behavior. Both analytical and computational
methods are employed to obtain the characteristics of the non-linear systems.
Finally, attention is shifted to chaos control. For this purpose, the delayed
feedback control, the addition of constant motor torque, the addition periodic
force,and adaptive control algorithm (ACA) are used to control chaos.
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2. EQUATIONS OF MOTION

Assume that there is a partially liquid-filled cylindrical tank in a satellite, as
shown in Figure 1. Let ojhz be an orthogonal inertial coordinate system with
origin at mass centre O of the spacecraft without liquid. Let Oxyz be a rotating
orthogonal coordinate system fixed with spacecraft and Ox, Oy and Oz be the
three principal axes of inertia, after liquid is solidified. A, B, C are the principal
moments of inertia (liquid plus rigid). G is the mass center of the system on Oz,
and assume that the distance between O and G is zero. v1, v2, v3 are the projection
of the angular velocity v on x, y, z axis respectively. The Euler dynamic equations
of system are [3]

Av̇1 + (C−B)v2v3h� 1 +v2h3 −v3h2 =ML
x

Bv̇2 + (A−C)v3v1 + h� 2 +v3h1 −v1h3 =ML
y

Cv̇3 + (B−A)v1v2 + h� 3 +v1h2 −v2h1 + bv3 =ML
z (2.1)

where b is the damping coefficient, Oz is vertical and upward and hi (i=1, 2, 3)
is the angular momentum of rotor which is located along Ox, Oy, and Oz
respectively for stabilizing the orientation of the satellite. The analysis below will
be made under the following assumptions: the angular momentum of the rotor is
constant, i.e., hi =constant (i=1, 2, 3), resistance such as the friction drag in
motion of the rotor can be neglected, solid parts of the spacecraft and the rotors
are rigid bodies and the axes of rotation of the rotors are fixed on the spacecraft,
and the mass of the rigid parts is symmetrical about the Oz axis, i.e., A=B.

Because of the complexity of the problem, it is generally difficult to determine
the internal slosh moment. To simplify the problem and make it easier to study,

Figure 1. Physical model of the system.
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we solidify the liquid and add the internal moment to the system as an external
moment. Assume that

ML
x = mxyv2

ML
y = myxv1

ML
z =0 (2.2)

where mxy myx are coefficients influenced by many factors about sloshing. Equation
(2.1) is rewritten as follows:

Av̇1 + (C−B)v2v3 +v2h3 −v3h2 = mxyv2

Bv̇2 + (A−C)v3v1 +v3h1 −v1h3 = myxv1

Cv̇3 + (B−A)v1v2 +v1h2 −v2h1 + bv3 =0. (2.3)

3. STABILITY ANALYSIS BY LYAPUNOV DIRECT METHOD

The stability of the system will be investigated by the Lyapunov direct method
[4]. In this section, first the only equilibrium of the system can be found from
equation (2.3) as p=(0, 0, 0). Add slight disturbances x, y, z to the fixed point
(0, 0, 0)

v1 = x, v2 = y, v3 = z. (3.1)

Substitute equation (3.1) into equation (2.3); it becomes

x=01−
C
A1yz+

h2

A
z−

h3

A
y+

mxy

A
y

y=−01−
C
A1xz+

h3

A
x−

h1

A
z+

myx

A
x

z=−
h2

C
x+

h1

C
y−

b
C

z. (3.2)

Construct a Lyapunov function as:

V= x2 + y2 +
C
A

z2 + xy+ xz. (3.3)

By Sylvester’s theorem [4], the sufficient condition for the positive definiteness
of function V is

C
A

q 1
3 (3.4)

and the time derivative of V through equation (3.2) is

dV
dt

= a11x2 + a22y2 + a33z2 +2a12xy+2a23yz+2a13xz+ · · · (3.5)
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where ellipsis dots are high order terms and

a11 =
myx + h3

A
−

h2

C
, a22 =

mxy − h3

A
, a33 =

h2 − b
A

a12 =
mxy + myx

A
+

h1

2C
, a23 =

h2 + mxy − h3

2A
, a13 =

− h1

2A
−

b
2C

.

By Sylvester’s theorem, the time derivative of V is negative definite if

a11 Q 0

a11a22 − a2
12 q 0

a11a22a33 +2a12a13a23 − a11a2
23 − a22a2

13 − a33a2
12 Q 0. (3.6)

The conditions of the stability of the satellite system are the three inequalities in
equation (3.6). If we choose A=500, C=1000, h2 =1200, h3 =300,
mxy = myx =50, from equation (3.6) the system is stable when h1 Q−616·2.

4. APPLICATION OF CENTER MANIFOLD THEORY

In non-linear dynamical systems, variation of system parameters may cause a
sudden change in the qualitative behavior of their state. The state change is
referred to as a bifurcation and the parameter value at which the bifurcation
occurs is called the bifurcation point [5]. Here we give attention to that Hopf
bifurcation will occurs in this system [6]. We assume h1 = h2 and mxy = myx to
simplify the system. Equation (3.2) is rewritten in matrix form

X� =PX+ f(X ), X$R3 (4.1)

where

X=[x, y, z]T

0
mxy − h3

A
h1

A

P=
h3 + mxy

A
0

−h1

AG
G

G

G

G

K

k

G
G

G

G

G

L

l
−h1

C
h1

C
−b
C

f= &f1(X)
f2(X)

0 '
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where

f1(X)=01−
C
A1yz, f2(X)=−01−

C
A1xz.

The Jacobian matrix P is evaluated at the fixed point (0, 0, 0). Further, it is
necessary to find the value of mxy for which the eigenvalues of P contain a pure
imaginary pair and the remaining eigenvalue has negative real part. The conditions
for a pure imaginary pair of eigenvalues can be shown to be

mxy =−
bA
C

.

The system has pure imaginary eigenvalues

2 iXh2
3

A2 +
2h2

1

AC
−

b2

C2 =2ij

and that the third eigenvalue is −b/C.
At this critical parameter mxy , the origin is non-hyperbolic. The eigenvalues of

matrix P fails to determine the stability of the fixed point and it becomes necessary
to consider the higher order terms to analyze the three-dimensional non-linear
system. So we use the following method to analyze the dynamical system. First,
the center manifold theorem will be applied to reduce the dimension of the state
spaces at the critical parameter mxy . The following linear transformation matrix is
used to transform equation (4.1):

1 −
b
C

−
h3

A
h1

T= −1
b
C

−
h3

A
h1G

G

G

G

G

K

k

G
G

G

G

G

L

l0
2h1

C
h3

which is formed by eigenvectors of P. It can be evaluated that

G
G

G

G

G

K

k

G
G

G

G

G

L

l

T−1 =
1
D

Abh3 −Ch2
3 −2Ah2

1

A2C
h3

A
−2h1

C

Abh3 +Ch2
3 +2Ah2

1

A2C
h3

A
−2h1

C

−2bh1

AC
−2h1

A
−2h3

A

D=
−2Ch2

3 −4Ah2
1

A2C
.
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Let

&xyz'=T&q1

q2

q3'
then equation (4.1) is transformed into Jordan form

q̇1 0 −j 0 q1

q̇2 = j 0 0 q2 +T−1f(Tq) (4.2)G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l
q̇3 0 0 −b

C q3

where

f(Tq)=01−
C
A1

−
2h1

C
q1q2 +

2h1

C 0b
C

−
h3

A1q2
2 +02h2

1 + bh3

C
−

h2
3

A1q2q3 + h3q1q3 + h1h3q2
3

G
G

G

G

G

K

k

G
G

G

G

G

L

l

.
−

2h1

C
q1q2 +

2h1

C 0b
C

+
h3

A1q2
2 +0−2h2

1 + bh3

C
+

h2
3

A1q2q3 − h3q1q3 − h1h3q2
3

0

According to the center manifold theory, it is found that there exists a center
manifold tangent to the two-dimensional eigenspace which is spanned by the
eigenvectors corresponding to the pure imaginary pair eigenvalues. The behavior
of the original system in close vicinity to the degenerate point can be determined
by a two-dimensional system restricted within the center manifold h(q1, q2) [7]. We
have

$q̇1

q̇2%=$0j −j

0%$q1

q2%+$f1(q)
f2(q)% (4.3)



    813

where

f2(q)=
A−C

DA 6−4bh1h3

AC2 q1q2 +04b2h1h3

AC3 +
4Ah2

1h3 +2Ch3
3

A3C 1q2
2

+$2b2h2
3

AC2 +0Ch2
3 +2Ah2

1

A2C 102Ch2
3 −4Ah2

1

AC 1%$(C2j+2C2j2)q2
1q2

−0b3 − bC2j+2bC2j2

Cj 1q1q2
2 + (b2 −C2j+2C2j2)q3

2%
−02Ch3

3 +4Ah2
1h3

A2C 1$(C2j+2C2j2)q3
1 −0b3 − bC2j+2bC2j2

Cj 1q2
1q2

+ (b2 −C2j+2C2j2)q1q2
2%−02h1h3

3 +4Ah3
1h3

A2C 1$(C2j+2C2j2)q2
1

−0b3 − bC2j+2bC2j2

Cj 1q1q2 + (b2 −C2j+2C2j2)q2
2%

2

7
f2(q)=

A−C
DA 6−4h1h3

AC
q1q2 +

4h1h3b
AC2 q2

2 +
2bh2

3

AC
(C2j+2C2j2)q2

1q2

−0b3 − bC2j+2bC2j2

Cj 1q1q2
2 + (b2 −C2j+2C2j2)q2

37
and the center manifold is

h(q1, q2)= (C2j+2C2j2)q2
1 −0b3 − bC2j+2bC2j2

Cj 1q1q2

+ (b2 −C2j+2C2j2)q2
2 . (4.4)

The Hopf bifurcation stability formula for a general two-dimensional system of
equation (4.3) is:

a=
1
16 013f1

1q3
1
+

13f1

1q1 1q2
2
+

13f1

1q2
1 1q2

+
13f1

1q3
21+

1
16v $ 12f1

1q1 1q2 012f1

1q2
1
+

12f1

1q2
21

−
12f2

1q1 1q2 012f2

1q2
1
+

12f2

1q2
21−

12f1

1q2
1

12f2

1q2
1
+

12f1

1q2
2

12f2

1q2
2%. (4.5)
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In our case, we obtain that

a=
1

16D 01−
C
A16−(2Ch3

3 +4h2
1h3)(b2 +4C2j2)
A2C

+$2b2h2
3

AC2

+
(Ch2

3 +2Ah2
1 )(2Ch2

3 +4Ah2
1 )

A3C2 %0−b3 + bC2j−2bC2j2

Cj 1
+

2bh2
3 (b2 +4C2j2)

AC

+
1

16vD2 01−
C
A1

2

016bh2
1h2

3

A2C3 1. (4.6)

If aQ 0, the periodic orbits are stable and occur above bifurfation (supercritical),
while if aq 0, they are unstable and occur below bifurcation (subcritical). The
system is always stable with the given parameters: A=500, C=1000, h2 =1200,
h3 =300, mxy = myx =50.

5. PHASE PORTRAITS, POINCARÉ MAP AND POWER SPECTRUM

In previous sections, the angular momentum of rotor h3 is assumed to be
constant for the system. Another condition can be considered. The angular
momentum of rotor h3 is now not constant but is represented by a constant term
and a harmonic term h3(1+ a sin vt), where h3, a, v are constants. The equation
(3.2) is rewritten in the form

ẋ=01−
C
A1 yz+

h2

A
z−

h3(1+ a cos vt)
A

y+
mxy

A
y

ẏ=−01−
C
A1xz+

h3(1+ a cos vt)
A

x−
h1

A
z+

myx

A
x

ż=−
h2

C
x+

h1

C
y−

b
C

z+
h3a sin vt

C
(5.1)

where A=500, C=1000, mxy = myx =50, h1 = h2 =200, h3 =250, b=200,
v=1·0 [3].

The phase portrait is the evolution of a set of trajectories emanating from
various initial conditions in the state space. When the solution reaches steady state,
the transient behavior disappears. The idea of transforming the study of
continuous systems into the study of an associated discrete system was presented
by Henri Poincaré [8]. One of the many advantages of the Poincaré map is to
reduce dimensions of the dynamical system [9]. The technique introducced by
Poincaré deals with the question with the four-dimensional phase space (x, y, z, t)
whenever t is a multiple of T=2p/v. Here T is the period of the external torque.
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Figure 2. Phase portraits and Poincaré map for (a) a=14·6, (b) a=14·4, (c) phase portraits for
a=14·2 and (d) Poincaré map for a=14·2.

A similar trajectory bundle emerges from each t=mT plane (m=0, 1, 2, 3, . . . . )
so that photographs of every interval would be identical. The solution of period-1T
in the phase plane will become one point in the Poincaré map. By using the fourth
order Runge–Kutta numerical integration method, the phase plane and Poincaré
map of the satellite system, equation (5.1), is plotted in Figure 2(a), (b) for a=14·6
and 14·4 respectively. Clearly, the motion is periodic. But Figure 2(c), (d) for
a=14·2 show the chaotic state. Because the Poincaré map is neither a finite set
of points nor a closed orbit, the motion may be chaotic.

Any function x(t) may be represented as a superposition of different periodic
components. The determination of their relative strength is called spectral analysis.
Due to the character of the function x(t), there are two different methods to
express x(t). If it is periodic, the spectrum may be a linear combination of
oscillations whose frequencies are integer multiples of a basic frequency. The linear
combination is called a Fourier series. If it is not periodic, the spectrum then must
be in terms of oscillations with a continuum of frequencies. Such a representation
of the spectrum is called Fourier integral of x(t). This representation is useful for
dynamical analysis. The nonautonomous system is observed by the portraits of
time history and power spectrum for a=14·6. In Figure 3(a), the solution of
system is period-1T, and the power spectrum exhibits a strong peak at the forcing
frequency together with super-harmonic frequencies. As the a increases, the
period-1T changes to period-2T and the peak arises at one half forcing frequency,
twice the principal period in the power spectrum.
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Apparently, the spectrum of the periodic motion only consists of discrete
frequencies. As a=14·2 chaos occurs, the points of Poincaré map become
obviously irregular. The spectrum is a broad band and the peak is still presented
at the fundamental frequency shown in Figure 3(b). The noise-like spectrum is the
characteristic of chaotic dynamical system.

6. BIFURCATION DIAGRAM AND PARAMETRIC DIAGRAM

In the previous section, the information about the dynamics of the non-linear
system for specific values of the parameters is provided. The dynamics may be
viewed more completely over a range of parameter value. As the parameter is
changed, the equilibrium points can be created or destroyed, or their stability can
be lost. The phenomenon of sudden change in the motion as a parameter is varied
is called bifurcation, and the parameter values at which they occur are called
bifurcation points.

The bifurcation diagram of the non-linear system of equation (5.1) is depicted
in Figure 4. It is calculated by the fourth order Runge–Kutta numerical integration
and plotted against a$ [14·2, 14·6], while the incremental value of a is 0·005. At
each a, the points of the Poincaré map for the transient state of motion are
discarded. Figure 4 presents the amplitude of the angular momentum of the rotor
which is located along the Oz axis versus angular velocity.

Figure 3. Power spectrum for (a) a=14·6 and (b) a=14·2.
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Figure 4. Bifurcation diagram of a versus angular velocity.

Further, the parameter values, damping coefficient and forcing frequency will
also be varied to observe the behaviors of bifurcation of the system. By varying
simultaneously any two of the three parameters, amplitude of the external torque,
damping coefficient, and forcing frequency, the parametric diagrams are described
and shown as in Figure 5(a), (b). The enriched information of the behaviors of
the system can be obtained from the diagrams. In Figure 5(a), when the amplitude
increases, the periodic and chaotic motion alternate with each other. We can find
that the region of chaos includes the period-3 region from Figure 5(b). Obviously,
‘‘period-3 implies chaos’’ was presented.

7. LYAPUNOV EXPONENT AND LYAPUNOV DIMENSION

The Lyapunov exponent may be used to measure the sensitive dependence upon
initial conditions [10, 11]. It is an index for chaotic behavior. Different solutions
of the dynamical system, such as fixed points, periodic motions, quasiperiodic
motion, and chaotic motion can be distinguished by it. If two chaotic trajectories
start close to one another in phase space, they will move exponentially away from
each other for small times on the average. Thus, if d0 is a measure of the initial
distance between the two starting points, the distance is d(t)= d02lt. The symbol
l is called Lyapunov exponent. The divergence of chaotic orbits can only be locally
exponential, because if the system is bounded, d(t) cannot grow to infinity. A
measure of this divergence of orbits is that the exponential growth at many points
along a trajectory has to be averaged. When d(t) is too large, a new ‘nearby’
trajectory d0(t) is defined. The Lyapunov exponent can be expressed as:

l=
1

tN − t0
s
N

k=1

log2
d(tk )

d0(tk−1)
. (7.1)
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The signs of the Lyapunov exponents provide a qualitative picture of a system
dynamics. The criterion is

lq 0 (chaotic),

lE 0 (regular motion).

The periodic and chaotic motions can be distinguished by the bifurcation
diagram, while the quasiperiodic motion and chaotic motion may be confused.
However, they can be distinguished by the Lyapunov exponent method. The

Figure 5. Parametric diagram (a) a versus v and (b) a versus b.
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Figure 6. The largest Lyapunov exponents for a between 14·2 and 14·6.

Lyapunov exponents of the solutions of the non-linear dynamical system, equation
(5.1), are plotted in Figure 6 as a ranges from 14·2 to 14·6. For the system studied
the sum of the four Lyapunov exponents is equivalent to the negative damping
coefficient −0·2. If the value of the Lyapunov exponent is greater than zero, it
is chaos; otherwise it would be periodic solution. Observably, the chaotic motion
can be found in Figure 6 for a close 14·2.

There are a number of different fractional-dimension-like quantities, including
the information dimension, Lyapunov dimension, and the correlation exponent,
etc; the difference between them is often small. The Lyapunov dimension is a
measure of the complexity of the attractor. It has been developed by Kaplan and
Yorke [12] that the Lyapunov dimension dL is introduced as

dL = j+

s
j

i=1

li

=lj+1=
, (7.2)

T 1

Lyapunov exponents and Lyapunov dimensions of the system for different a

a l1 l2 l3 l4 Sli dL

14·58 −0·0056 0 −0·0498 −0·1446 −0·2 1 Period-1
14·4 −0·0407 0 −0·0751 −0·0842 −0·2 1 Period-2
14·25 −0·0109 0 −0·0310 −0·1581 −0·2 1 Period-4
14·223 −0·0020 0 −0·0536 −0·1444 −0·2 1 Period-8
14·2 −0·0295 0 −0·0516 −0·1779 −0·2 2·5717 Chaos
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Figure 7. (a) The projection of attractors. (b) Basins of attraction for z=0·9. (c) z=1·0. (d)
z=1·1.

where j is defined by the condition that

s
j

i=1

li q 0 and s
j+1

i=1

li Q 0.

The Lyapunov dimension for a strange attractor is a non-integer number. The
Lyapunov dimension and the Lyapunov exponent of the non-linear system are
listed in Table 1 for different values of a.

8. GLOBAL ANALYSIS BY MODIFIED INTERPOLATED CELL
MAPPING METHOD

A brief introduction of the modified interpolated mapping method [13] is given
as follows. Consider a point mapping system which is governed by

Xn+1 = f(Xn ), X$R3 (8.1)
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Figure 9. The largest Lyapunov exponent against M.

Figure 10. The largest Lyapunov exponent against a.

Figure 8. (a) The output signal of the system. (b) The input signal.

where f :R3:R3 and n is integer. The basic concept of the interpolated mapping
method is to find the image Xn+1 by using an interpolation procedure instead of
the system. For a three-dimensional system, the interested region D is specified by
a Cartesian product [x1 min, x1 max]× [x2 min, x2 max]× [x3 min, x3 max], which is divided
into N1 ×N2 ×N3 cells. The size of the cells is hi =(xi max − xi min)/Ni , i=1, 2, 3.



(a)
4

2

0

–2

–4
0–2 2 4

x

x

(b)

0–2 2 4

x

.-.   .822

The first mappings of cells in the region of interest are constructed by numerical
integration to serve as the reference mappings for the interpolation. The
interpolated mapping of each cell is constructed within the mapping periods
assigned, such as 30 periods. Through these mapping sequences, periodic
attractors with periods of less than 30 are located by the criterion 10−5 cell size.
If no periodic attractor is located, the 30th mapping of each cell is assigned to the
first mapping, and then iterated forward to construct the next iteration of 30
mappings. If periodic attractors are located and a cell leads to a periodic attractor
within the criterion 10−2 cell size, the cell is considered in the basin of attraction
of the attractor.

For a three-dimensional system, 1013 cells are studied by a modified interpolated
mapping method, where 101 is the number of the total cells divided in each
dimensional of the region of interest.

In this section the equation (5.1) with the values of parameters is considered as
follows:

ẋ=−yz+0·4z+0·1y+0·5(1+ a cos t)y

ẏ= xz−0·4z+0·1x+0·5(1+ a cos t)x

ż=−0·2x+0·2y−0·2z+0·25a sin t. (8.2)

Two black dots in Figure 7(a) for a=14·6 indicate the system motion is
period-1 motion and the corresponding basins of attraction are shown in Figure
7(b–d) with z=0·9, 1·0, 1·1. The symbol ‘‘w’’ and ‘‘×’’ denote the cells attracted
by different period-1 stable solutions. The transition from one basin of attraction
to another is labelled as basin boundary. It implies that when the input parameters
are away from the boundary, small uncertainties in the parameters will not affect
the outcome.

9. CONTROLLING CHAOS

Several interesting non-linear dynamic behaviors of the system have been
discussed in previous sections. It has been shown that the forced system exhibited
both regular and chaotic motion. Usually chaos is unwanted or undesirable.

Figure 11. Phase portraits of periodic motion (a) period-1 and (b) period-2.
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In order to improve the performance of a dynamic system or avoid the chaotic
phenomena, we need to control a chaotic motion to become a periodic motion
which is beneficial for working with a parrticular condition. It is thus of great
practical importance to develop sutiable control methods. Very recently much
interest has been focused on this type of problem—controlling chaos [14-17]. For
this purpose, the delayed feedback control, the addition of constant motor torque,
the addition periodic force, and adaptive control algorithm (ACA) are used to
control chaos. As a result, the chaotic motion can be controlled.

(A)       

Let us consider a dynamic system which can be simulated by ordinary
differential equations. We imagine that the equations are unknown, but some
scalar variable can be measured as a system output. The idea of this method, is
that the difference D(t) between the delayed output signal y(t− t) and the output
signal y(t) is used as a control signal. In other words, we adapt a perturbation
of the form:

F(t)=K[ y(t− t)− y(t)]=KD(t). (9.1)

Here t is a delay time. By choosing an appropriate weight K and t of the feedback
one can achieve the periodic state. For K=0·1 and t=2, the results of equation
(8.2) are shown in Figure 8.

This control is achieved by the use of the output signal, which is fed in a special
form into the system. The difference between the delayed output signal and the
output signal itself is used as a control signal. Only a simple delay line is required
for this feedback control. To achieve the periodic motion of the system, two
parameters, namely, the time of delay t and the weight K of the feedback, should
be adjusted.

(B)         

Interestingly, one can even add just a constant term to control or quench the
chaotic attractor to a desired periodic one in a typical non-linear nonautonomous
system. It ensures effective control in a very simple way. In order to understand
this simple controlling approach in a better way, this method is applied
numerically (8.2). We add the constant motor torque M into the third equation
of equation (8.2).

In the absence of the constant motor torque, the system exhibits chaotic
behavior under the parameter condition: a=14·2.

If one considers the effect of the constant motor torque M by increasing it from
zero upwards, the chaotic behavior is then altered. Spectral analysis of the
Lyapunov exponents have proven to be the most useful dynamical diagnostic tool
for examining chaotic motions. In Figure 9, the maximal Lyapunov exponents are
shown. It is clear that the system returns to regular motion, when the constant
motor torque M is presented at certain intervals.

(C)         

One can control system dynamics by the addition of external periodic force in
the chaotic state. For our purpose, the added periodic force, a sin (v̄t+f), is



.-.   .824

given. The system can then be investigated by numerical solution, with the
remaining parameter fixed. We examine the change in the dynamics of the system
as a function of a for fixed v̄=1·5, f=0. The maximal Lyapunov exponents are
estimated numerically, and the results are shown in Figure 10. At certain intervals,
the maximal Lyapunov exponents li E 0, which indicates that predictability of the
system recovers.

(D)       (ACA)

Recently Huberman and Lumer [17] have suggested a simple and effective
adaptive control algorithm which utilizes an error signal proportional to the
difference between the goal output and actual output of the system. The error
signal governs the change of parameters of the system, which readjusts so as to
reduce the error to zero. This method can be explained briefly: the system motion
is set back to a desired state Xs by adding dynamics on the control parameter P
through the evolution equation,

P= oG(X−Xs ), (9.2)

where the function G depends on the difference between Xs and the actual output
X, and o indicates the stiffness of the control. The function G could be either linear
or non-linear. In order to convert the dynamics of system (8.2) from chaotic
motion to the desired periodic motion (Xs ), the chosen parameter a is perturbed
as

a= o(X−Xs ). (9.3)

If o=0·2, the system can reach the period-1 and period-2 easily shown as
Figure 11(a), (b). It is clear that the desired periodic motion can be reached by
adaptive control algorithm.

10. CONCLUSIONS

The dynamic system of the damped satellite with partially-filled liquid exhibits
a rich variety of non-linear behaviours as certain parameters are varied. Due to
the effect of non-linearity, regular or chaotic motions may occur. In this paper,
both analytical and computational methods have been employed to study the
dynamical behaviors of the non-linear system.

The stability conditions for the system have been found by using the Lyapunov
direct method and a codimension one bifurcation analysis for the autonomous
system is studied by using center manifold theory.

The periodic, and chaotic motion of the nonautonomous system are obtained
by the numerical methods such as power spectrum, the Poincaré map and
Lyapunov exponents. All these phenomena have been displayed in bifurcation
diagrams. More information of the behaviors of the periodic and the chaotic
motion can be found in parametric diagrams. The changes of parameter play a
mojor role for the nonlinear system. Chaotic motion is the motion which has a
sensitive dependence on initial condition in deterministic physical systems. The
chaotic motion has been detected by using Lyapunov exponents and Lyapunov
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dimensions. Besides, a global analysis of the non-linear system have been obtained
by using modified interpolated cell mapping (MICM).

The presence of chaotic behavior is generic for suitable non-linearities, ranges
of parameters and external force, where one wishes to avoid or control so as to
improve the performance of a dynamical system. Several methods are used to
control chaos effectively.

By using a number of analytical or computational methods, the non-linear
behaviors of the satellite like the different types of periodic solutions, the effects
on the solutions caused by different parameters and initial conditions, and the
stability analysis of solutions have been studied here. In spite of the difference
between these methods, the results obtained agree well. The conclusion is that
there exist complicated phenomena in the dynamics of the non-linear system.
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